At nanoscale, man-made materials may show unique properties that differ from bulk and dissolved counterparts. The unique properties of engineered nanomaterials not only impart critical advantages but also confer toxicity because of their unwanted interactions with different biological compartments and cellular processes. In this review, we discuss various entry routes of nanomaterials in the human body, their applications in daily life, and the mechanisms underlying their toxicity. We further explore the passage of nanomaterials into air, water, and soil ecosystems, resulting in diverse environmental impacts. Briefly, we probe the available strategies for risk assessment and risk management to assist in reducing the occupational risks of potentially hazardous engineered nanomaterials including the control banding (CB) approach. Moreover, we substantiate the need for uniform guidelines for systematic analysis of nanomaterial toxicity, in silico toxicological investigations, and obligation to ensure the safe disposal of nanowaste to reduce or eliminate untoward environmental and health impacts. At the end, we scrutinize global regulatory trends, hurdles, and efforts to develop better regulatory sciences in the field of nanomedicines.