Real-time monitoring of the structural evolution of battery materials is crucial for understanding their underlying reaction mechanisms, which cannot be satisfied by the typically used post-mortem analysis. While more and more operando techniques were constructed and employed, they are all based on ambient working conditions that are not generally the case for realworld applications. Indeed, batteries work in an environment where self-heat dissipation increases the surrounding temperature, and extreme temperature applications (<−20 °C or >60 °C) are also frequently proposed. Operando characterization techniques under variable temperatures are therefore highly desired for tracking battery reactions under real-working conditions. Here, we develop a methodology to operando monitor the electronic and geometrical structures of battery materials over a wide range of temperatures based on X-ray spectroscopies. It is substantiated with data collected on a model LiNi 0.90 Co 0.05 Mn 0.05 O 2 /Si@C pouch cell under operando quick X-ray absorption fine structure spectroscopy, by which we found a temperature-dependent structure evolution behavior that is highly correlated with the electrochemical performance. Our work establishes an exemplary protocol for analyzing battery materials under temperature-variable environments that can be widely used in other related fields.