Density functional theory (DFT) calculations were performed to examine the impact of exchange–correlation (XC) functionals and van der Waals corrections (specifically the D3 method) on the structural and vibrational properties of the SrCl2–NaCl and ZrF4–LiF salt systems. Multiple XC functionals, including the local density approximation (LDA), the generalized gradient approximation using the Perdew–Burke–Ernzerhof (PBE) model, and its modified form suitable for solids (PBEsol), the dispersion‐corrected PBE‐D3 and PBEsol‐D3, were considered. Of these functionals, LDA was found to exhibit the highest degree of error, while PBEsol and PBE‐D3 displayed the least error. Underestimated lattice parameters compared with experimental values were observed to result in higher force constants, leading to an overprediction of vibrational frequencies. Conversely, an overestimation of lattice parameters was associated with lower vibrational frequencies. The methodology presented in this study yielded results that are in good agreement with experiment, irrespective of the method (finite differences vs. density functional perturbation theory) employed for calculating infrared and Raman spectra. It was further demonstrated that for alkali halides with weak Raman scattering, utilizing a supercell constructed from primitive cells better predicts Raman features than does the use of conventional cells.