The most common cause of gastric cancer is infection with helicobacter pylori (HP), but the associated molecular mechanism is not well understood. In the present study, we found a marked increase in the expression of B7-H1, a member of the B7 co-stimulatory family of molecules that bind to programmed death-1 (PD-1) and play a critical immunoregulatory role in the cell-mediated immune response, in HP-positive gastric cancer tissue. Infection of cultured gastric cancer cells with HP promoted B7-H1 expression and inhibited miR-152 and miR-200b expression. We further demonstrated that these two miRNAs targeted B7-H1 mRNA and suppressed B7-H1 expression in gastric cancer cells. Finally, B7-H1 expression was found to correlate with miR-152 and miR-200b levels in gastric tumor tissues from human patients. Our findings suggest a novel mechanism by which HP infection promotes gastric cancer and also suggest potential targets, i.e., miR-152 and miR-200b, for the prevention and treatment of gastric cancer.