The tellurium (Te)-doped Ag 60-x Se 40 Te x (x = 0%, 5%, 10%, 15%) thin films of thickness ∼800 nm were prepared from the bulk sample by thermal evaporation method on a glass substrate. The X-ray diffraction study revealed the amorphous nature of the films whereas the change in vibrational modes was noticed from the Raman spectroscopy. The composition of the films was verified by energy dispersive X-ray analysis and the surface morphology pictures were taken by field emission scanning electron microscopy and atomic force microscope. The changes in optical properties (linear and non-linear) with Te addition were studied from UV-Visible spectroscopy data and related empirical formulas. The addition of Te reduced the bandgap values significantly and the reduction in transmission resulted in the increase of the linear refractive index. The decrease in optical bandgap is due to an increase in disorder while the width of the tail in the gap increased with Te%. The optical density, dispersion energy, extinction coefficient, carrier concentration, dielectric constant, oscillator wavelength increased while the oscillator energy, oscillator strength, optical electronegativity decreased with Te content. The electrical susceptibility increased with Te content. The non-linear susceptibilities and the non-linear refractive index increased which is good for the nonlinear photonic devices.