Solution-phase
self-assembly of anisotropic nanoparticles into
complex 2D and 3D assemblies is one of the most promising strategies
toward obtaining nanoparticle-based materials and devices with unique
optical properties at the macroscale. However, controlling this process
with single-particle precision is highly demanding, mostly due to
insufficient understanding of the self-assembly process at the nanoscale.
We report the use of in situ environmental scanning transmission electron
microscopy (WetSTEM), combined with UV/vis spectroscopy, small-angle
X-ray diffraction (SAXRD) and multiscale modeling, to draw a detailed
picture of the dynamics of vertically aligned assemblies of gold nanorods.
Detailed understanding of the self-assembly/disassembly mechanisms
is obtained from real-time observations, which provide direct evidence
of the colloidal stability of side-to-side nanorod clusters. Structural
details and the forces governing the disassembly process are revealed
with single particle resolution as well as in bulk samples, by combined
experimental and theoretical modeling. In particular, this study provides
unique information on the evolution of the orientational order of
nanorods within side-to-side 2D assemblies and shows that both electrostatic
(at the nanoscale) and thermal (in bulk) stimuli can be used to drive
the process. These results not only give insight into the interactions
between nanorods and the stability of their assemblies, thereby assisting
the design of ordered, anisotropic nanomaterials but also broaden
the available toolbox for in situ tracking of nanoparticle behavior
at the single-particle level.