Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membranebound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.