This review describes the antibodies formed against mammalian extracellular matrix (ECM) implants in humans and proposes methods for avoiding the detrimental effects of these antibodies. There are two types of antibodies against ECM implants: (i) The natural anti-Gal antibody constituting ∼1% of immunoglobulins in humans. This antibody binds to a carbohydrate antigen called the α-gal epitope with the structure Galα1-3Galβ1-4GlcNAc-R. The α-gal epitope is abundant in nonprimate mammals, including on ECM proteins and proteoglycans. Moreover, anti-Gal antibody titers increase within 2-4 weeks by 10- to 100-folds in human recipients of mammalian implants or xenografts expressing α-gal epitopes. (ii) Anti-non gal antibodies formed against ECM peptide sequences differing from those in homologous proteins in humans. Most homologous proteins in mammals contain immunogenic peptides that elicit anti-non gal antibody production when introduced into humans. Formation of anti-non gal antibodies is much slower than that of elicited anti-Gal antibodies. Both anti-Gal and anti-non gal antibodies are detrimental to ECM implant regeneration in humans by binding to the ECM and directing extensive macrophage-mediated degradation of the implant. In addition, antibodies binding to ECM proteins/proteoglycans may hinder stem cells interaction with the ECM, which is required for directing stem cell differentiation. The anti-Gal immunological barrier can be avoided by using mammalian ECM implants lacking α-gal epitopes. Such implants can be engineered by enzymatic destruction of α-gal epitopes with recombinant α-galactosidase. Alternatively, implants may be obtained from α1,3galactosyltransferase knockout donor species that lack α-gal epitopes. Since postimplantation production of anti-non gal antibodies is a slow process, the detrimental effects of these antibodies may be avoided by accelerating stem cells recruitment into implants, thus accelerating the regeneration process. Acceleration of stem cell recruitment may be achieved by introducing α-gal nanoparticles into the implant. α-Gal nanoparticles present multiple α-gal epitopes, which bind anti-Gal and induce recruitment of macrophages by generating complement chemotactic factors. Fc/Fcγ receptor interaction between anti-Gal coating α-gal nanoparticles and recruited macrophages activates the macrophages to secrete "pro-healing" cytokines/growth factors that recruit stem cells. These recruited cells are instructed by the implanted ECM to regenerate the implant before anti-non gal antibodies can reach detrimental titers.