Various directed evolution methods exist that seek to procure bacteriophages with expanded host ranges, typically targeting phage-resistant or non-permissive bacterial hosts. The general premise of these methods is to propagate phage on multiple bacterial hosts, pool the lysate, and repeat the propagation process until phage(s) can form plaques on the target host(s). In theory, this propagation process produces a phage lysate that contains input phages and their evolved phage progeny. However, in practice, this phage lysate can also include prophages originating from bacterial hosts. Here we describe our experience implementing one directed evolution method, the Appelmans protocol, to study phage evolution in thePseudomonas aeruginosaphage-host system, in which we observed rapid host-range expansion of the phage cocktail. Further experimentation and sequencing analysis revealed that this observed host-range expansion was due to aCasadabanvirusprophage that originated from one of the Appelmans hosts. Host-range analysis of the prophage showed that it could infect five of eight bacterial hosts initially used, allowing it to proliferate and persist through the end of the experiment. This prophage was represented in half of the sequenced phage samples isolated from the Appelmans experiment. This work highlights the impact of prophages in directed evolution experiments and the importance of incorporating sequencing data in analyses to verify output phages, particularly for those attempting to procure phages intended for phage therapy applications. This study also notes the usefulness of intraspecies antagonism assays between bacterial host strains to establish a baseline for inhibitory activity and determine presence of prophage.IMPORTANCEDirected evolution is a common strategy for evolving phages to expand host range, often targeting pathogenic strains of bacteria. In this study we investigated phage host-range expansion using directed evolution in thePseudomonas aeruginosasystem. We show that prophage are active players in directed evolution and can contribute to observation of host-range expansion. Since prophage are prevalent in bacterial hosts, particularly pathogenic strains of bacteria, and all directed evolution approaches involve iteratively propagating phage on one or more bacterial hosts, the presence of prophage in phage preparations is a factor that needs to be considered in experimental design and interpretation of results. These results highlight the importance of screening for prophages either genetically or through intraspecies antagonism assays during selection of bacterial strains and will contribute to improving experimental design of future directed evolution studies.