Purpose: Conventional anticancer treatments are often impaired by the presence of hypoxia. TH-302 selectively targets hypoxic tumor regions, where it is converted into a cytotoxic agent. This study assessed the efficacy of the combination treatment of TH-302 and radiotherapy in two preclinical tumor models. The effect of oxygen modification on the combination treatment was evaluated and the effect of TH-302 on the hypoxic fraction (HF) was monitored using [ 18 F]HX4-PET imaging and pimonidazole IHC stainings. Experimental Design: Rhabdomyosarcoma R1 and H460 NSCLC tumor-bearing animals were treated with TH-302 and radiotherapy (8 Gy, single dose). The tumor oxygenation status was altered by exposing animals to carbogen (95% oxygen) and nicotinamide, 21% or 7% oxygen breathing during the course of the treatment. Tumor growth and treatment toxicity were monitored until the tumor reached four times its start volume (T4ÂSV).Results: Both tumor models showed a growth delay after TH-302 treatment, which further increased when combined with radiotherapy (enhancement ratio rhabdomyosarcoma 1.23; H460 1.49). TH-302 decreases the HF in both models, consistent with its hypoxia-targeting mechanism of action. Treatment efficacy was dependent on tumor oxygenation; increasing the tumor oxygen status abolished the effect of TH-302, whereas enhancing the HF enlarged TH-302 0 s therapeutic effect. An association was observed in rhabdomyosarcoma tumors between the pretreatment HF as measured by [ 18 F]HX4-PET imaging and the T4ÂSV.Conclusions: The combination of TH-302 and radiotherapy is promising and warrants clinical testing, preferably guided by the companion biomarker [18 F]HX4 hypoxia PET imaging for patient selection.