Molecular imaging can provide functional and molecular information at the cellular or subcellular level in vivo in a noninvasive manner. Activatable nanoprobes that can react to the surrounding physiological environment or biomarkers are appealing agents to improve the efficacy, specificity, and sensitivity of molecular imaging. The physiological parameters, including redox status, pH, presence of enzymes, and hypoxia, can be designed as the stimuli of the activatable probes. However, the success rate of imaging nanoprobes for clinical translation is low. Herein, the recent advances in nanoparticleâbased activatable imaging probes are critically reviewed. In addition, the challenges for clinical translation of these nanoprobes are also discussed in this review.