The fields of precision imaging and drug delivery have revealed a number of tools to improve target specificity and increase efficacy in diagnosing and treating disease. Biological molecules, such as antibodies, continue to be the primary means of assuring active targeting of various payloads. However, molecularscale recognition motifs have emerged in recent decades to achieve specificity through the design of interacting chemical motifs. In this regard, an assortment of bioorthogonal covalent conjugations offer possibilities for in situ complexation under physiological conditions. Herein, a related concept is discussed that leverages interactions from noncovalent or supramolecular motifs to facilitate in situ recognition and complex formation in the body. Classic supramolecular motifs based on host−guest complexation offer one such means of facilitating recognition. In addition, synthetic bioinspired motifs based on oligonucleotide hybridization and coiled-coil peptide bundles afford other routes to form complexes in situ. The architectures to include recognition of these various motifs for targeting enable both monovalent and multivalent presentation, seeking high affinity or engineered avidity to facilitate conjugation even under dilute conditions of the body. Accordingly, supramolecular "click chemistry" offers a complementary tool in the growing arsenal targeting improved healthcare efficacy.