Communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in freshwater sediments and those in association with the root system of the macrophyte species Littorella uniflora, Juncus bulbosus, and Myriophyllum alterniflorum were compared for seven oligotrophic to mesotrophic softwater lakes and acidic heathland pools. Archaeal and bacterial ammonia monooxygenase alpha-subunit (amoA) gene diversity increased from oligotrophic to mesotrophic sites; the number of detected operational taxonomic units was positively correlated to ammonia availability and pH and negatively correlated to sediment C/N ratios. AOA communities could be grouped according to lake trophic status and pH; plant species-specific communities were not detected, and no grouping was apparent for AOB communities. Relative abundance, determined by quantitative PCR targeting amoA, was always low for AOB (<0.05% of all prokaryotes) and slightly higher for AOA in unvegetated sediment and AOA in association with M. alterniflorum (0.01 to 2%), while AOA accounted for up to 5% in the rhizospheres of L. uniflora and J. bulbosus. These results indicate that (i) AOA are at least as numerous as AOB in freshwater sediments, (ii) aquatic macrophytes with substantial release of oxygen and organic carbon into their rhizospheres, like L. uniflora and J. bulbosus, increase AOA abundance; and (iii) AOA community composition is generally determined by lake trophy, not by plant species-specific interactions.Oxygen release from the roots of macrophyte species such as Littorella uniflora (L.) Asch. (shore weed), Lobelia dortmanna L. (water lobelia), and Glyceria maxima (Hartm.) Holmb. (reed sweet grass) stimulates nitrification and coupled nitrification-denitrification in the rhizosphere compared to that in unvegetated sediment (2,36,40). These interactions are of high ecological relevance especially in oligotrophic systems, since enhanced nitrogen loss due to rhizosphere-associated denitrification can retard natural eutrophication and succession of plant communities (1). While the microbial communities involved in coupled nitrification-denitrification have been well studied in rice paddy soils (7, 11), less information is available for natural freshwater sediments, especially those from oligotrophic lakes (2, 26).The first key step of coupled nitrification-denitrification, the oxidation of ammonia to nitrite, is catalyzed by two groups of prokaryotes-the ammonia-oxidizing bacteria (AOB) (24) and the only recently recognized ammonia-oxidizing archaea (AOA) (22). For both groups, the gene encoding the alphasubunit of ammonia monooxygenase (amoA) has been widely used as a functional marker to analyze their community compositions (15,25); recent studies demonstrated the ubiquity of AOA and their predominance over AOB in a broad range of environments (32,38). AOA, but not AOB, were also strongly enriched in the rhizosphere of the freshwater macrophyte Littorella uniflora in a mesotrophic Danish lake, suggesting that AOA were primarily responsible for increased rates o...