EC-shell-ionization cross sections for Na, Mg, Al, Si, Cl, K, Ca, and Ti by protons in the energy range 0.5 -2.5 MeV have been measured using thin targets. Measurements have also been performed for thin targets of Fe, Ni, and Cu at a few energies. The energy range of protons for these targets corresponds to the reduced velocity {U1/U2&) range 0.2-1.1, in which the cross sections are very sensitive to the increased binding energy and the Coulomb-deflection effects. The measured ionization cross sections are compared with the predictions of the theory based on the perturbed-stationary-state approach including the Coulomb-deflection, energy-loss, and relativistic corrections. The data have been scaled according to various scaling laws to test the validity of the universal nature of the various Coulomb ionization theories based on the plane-wave Born approximation, the binary-encounter approximation, and the simplified semiclassical approximation model as given by La:gsgaard, Andersen, and Lund [in Proceed ings of the Tenth International Conference on the Physics ofElectronic and Atomic Collisions, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 353]. The measured data have also been compared with the calculations of Montenegro and Siguad [J. Phys. B 18, 299 (1985)] based on the theory of lscr molecular-orbital ionization.