“…Thus, Koldobskiǐ's [12] and Zastavnyi's [34] solution to the Schoenberg problem implies that k n,α (λ) is finite if (i) n = 1, α ∈ (0, ∞], λ ∈ (0, 2); (ii) n ≥ 2, α ∈ (0, 2), λ ∈ (0, α]; (iii) n ≥ 2, α = 2, λ ∈ (0, 2); and (iv) n = 2, α ∈ (2, ∞], λ ∈ (0, 1]; and infinite otherwise. Numerical values of k n,α (λ) are known in special cases only: k n,2 (1) = (n + 1)/2 (Golubov [10]); k 2,2 (1/2) = 1 (Pasenchenko [23]); k n,1 (1) = 2n − 1 (Berens and Xu [3]); and k 2,∞ (1) = 3. Furthermore, various estimates are known.…”