Amyloid fibrillation is a protein self-assembly phenomenon that is intimately related to wellknown human neurodegenerative diseases. During the past few decades, striking advances have been achieved in our understanding of the physical origin of this phenomenon and they constitute the contents of this review. Starting from a minimal model of amyloid fibrils, we explore systematically the equilibrium and kinetic aspects of amyloid fibrillation in both dilute and semi-dilute limits. We then incorporate further molecular mechanisms into the analyses. We also discuss the mathematical foundation of kinetic modeling based on chemical mass-action equations, the quantitative linkage with experimental measurements, as well as the procedure to perform global fitting.