Skeletal muscle is a complex organ essential for locomotion, posture, and metabolic health. This review explores our current knowledge of Mustn1, particularly in the development and function of skeletal muscle. Mustn1 expression originates from Pax7-positive satellite cells in skeletal muscle, peaks during around the third postnatal month, and is crucial for muscle fiber differentiation, fusion, growth, and regeneration. Clinically, Mustn1 expression is potentially linked to muscle-wasting conditions such as muscular dystrophies. Studies have illustrated that Mustn1 responds dynamically to injury and exercise. Notably, ablation of Mustn1 in skeletal muscle affects a broad spectrum of physiological aspects, including glucose metabolism, grip strength, gait, peak contractile strength, and myofiber composition. This review summarizes our current knowledge of Mustn1’s role in skeletal muscle and proposes future research directions, with a goal of elucidating the molecular function of this regulatory gene.