Background
The lineage 4 (L4) of Mycobacterium tuberculosis (MTB) is not only globally prevalent but also locally dominant, surpassing other lineages, with lineage 2 (L2) following in prevalence. Despite its widespread occurrence, factors influencing the expansion of L4 and its sub-lineages remain poorly understood both at local and global levels. Therefore, this study aimed to conduct a pan-genome and identify genomic signatures linked to the elevated prevalence of L4 sublineages among extrapulmonary TB (EPTB) patients in western Ethiopia.
Methods
A cross-sectional study was conducted at an institutional level involving confirmed cases of extrapulmonary tuberculosis (EPTB) patients from August 5, 2018, to December 30, 2019. A total of 75 MTB genomes, classified under lineage 4 (L4), were used for conducting pan-genome and genome-wide association study (GWAS) analyses. After a quality check, variants were identified using MTBseq, and genomes were de novo assembled using SPAdes. Gene prediction and annotation were performed using Prokka. The pan-genome was constructed using GET_HOMOLOGUES, and its functional analysis was carried out with the Bacterial Pan-Genome Analysis tool (BPGA). For GWAS analysis, Scoary was employed with Benjamini-Hochberg correction, with a significance threshold set at p-value ≤ 0.05.
Results
The analysis revealed a total of 3,270 core genes, predominantly associated with orthologous groups (COG) functions, notably in the categories of ‘[R] General function prediction only’ and ‘[I] Lipid transport and metabolism’. Conversely, functions related to ‘[N] Cell motility’ and ‘[Q] Secondary metabolites biosynthesis, transport, and catabolism’ were primarily linked to unique and accessory genes. The pan-genome of MTB L4 was found to be open. Furthermore, the GWAS study identified genomic signatures linked to the prevalence of sublineages L4.6.3 and L4.2.2.2.
Conclusions
Apart from host and environmental factors, the sublineage of L4 employs distinct virulence factors for successful dissemination in western Ethiopia. Given that the functions of these newly identified genes are not well understood, it is advisable to experimentally validate their roles, particularly in the successful transmission of specific L4 sublineages over others.