1. Mitochondria isolated from the thermogenic spadices of Arum maculatum and Sauromatum guttatum plants oxidized external NADH, succinate, citrate, malate, 2-oxoglutarate and pyruvate without the need to add exogenous cofactors. 2. Oxidation of substrates was virtually all via the alternative oxidase, the cytochrome pathway constituting only 10-20% of the total activity, depending on the stage of spadix development. 3. During later stages of spadix development, pyruvate oxidation was enhanced by the addition of aspartate. This was caused by acetyl-CoA condensing with oxaloacetate, produced from pyruvate/aspartate transamination, and so decreasing feedback inhibition of pyruvate dehydrogenase. 4. Pyruvate oxidation was inhibited by the long-chain acid maleimides AM5-11, but not by those with shorter polymethylene side groups, AM1-4. 5. The alpha-cyanocinnamate derivatives UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate] and CHCA [alpha-cyano-4-hydroxycinnamate] inhibited pyruvate-dependent O2 consumption and the carrier-mediated uptake of pyruvate across the mitochondrial inner membrane. Characteristics of non-competitive inhibition were observed for CHCA, whereas for UK5099 the results were more complex, suggesting a very low rate of dissociation of the inhibitor-carrier complex. 6. A comparison of the values of Vmax. and Km for oxidation and transport suggested that it was the latter which controls the overall rate of pyruvate oxidation by mitochondria from both tissues.