Deposition of highly conformal alumina thin films has been carried out by hydrolysis of the liquid alane precursor, AlH3(NMe2Et). Deposition onto Si wafers, quartz and carbon fibers were all carried out utilizing a hot-wall atmospheric pressure chemical vapor deposition (APCVD) system, while deposition onto ceramic particles was accomplished in a simple fluidized-bed APCVD reactor. Films were characterized by SEM, microprobe and electrical conductivity measurements. Growth rates were on the order of 40 - 80 Å.min−1 at 165 °C. The conformality of the films was illustrated using silicon wafers that were etched prior to deposition.