In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a general silencing suppression strategy. Indeed, it was shown that the related aureusvirus P14 and tombusvirus P19 suppressors are dsRNA-binding proteins. Interestingly, P14 is a size-independent dsRNA-binding protein, while P19 binds only 21-nucleotide ds-sRNAs (small dsRNAs having 2-nucleotide 3 overhangs), the specificity determinant of the silencing system. Much evidence supports the idea that P19 inhibits silencing by sequestering silencing-generated viral ds-sRNAs. In this study we wanted to test the hypothesis that dsRNA binding is a general silencing suppression strategy. Here we show that many plant viral silencing suppressors bind dsRNAs. Beet yellows virus Peanut P21, clump virus P15, Barley stripe mosaic virus ␥B, and Tobacco etch virus HC-Pro, like P19, bind ds-sRNAs size-selectively, while Turnip crinkle virus CP is a size-independent dsRNA-binding protein, which binds long dsRNAs as well as ds-sRNAs. We propose that size-selective ds-sRNA-binding suppressors inhibit silencing by sequestering viral ds-sRNAs, whereas size-independent dsRNA-binding suppressors inactivate silencing by sequestering long dsRNA precursors of viral sRNAs and/or by binding ds-sRNAs. The findings that many unrelated silencing suppressors bind dsRNA suggest that dsRNA binding is a general silencing suppression strategy which has evolved independently many times.RNA silencing (termed RNA interference [RNAi] in animals) is an RNA-based eukaryotic gene regulatory system that plays essential roles in many biological processes. RNA silencing is induced by accumulation of double-stranded RNAs (dsRNAs). dsRNAs are first processed by an RNase III-like nuclease called DICER (in plants it is termed DICER-LIKE [DCL]) into (21-to 25-nucleotide [nt]) small dsRNAs (ds-sRNAs) having 2-nt 3Ј overhangs, and then these sRNAs incorporate into different silencing effector complexes. In the active effector complexes sRNAs are present as single-stranded molecules, which guide these complexes to the complementary nucleic acids for suppression (2, 3, 22, 61).In plants, different dsRNA precursors are processed by distinct DCLs into functionally different short (21-to 22-nt) and long (23-to 25-nt) sRNAs (24, 25, 67). Short sRNAs guide a multicomponent nuclease (RNA-induced silencing complex [RISC]) to homologous mRNAs for suppression. RISC cleaves targeted mRNA in the case of (near) perfect base pairing between mRNA and guide RNA. When the guide RNA is only partially complementary to the mRNA, RISC mediates translational repression. Short sRNAs could also provide ...