1991
DOI: 10.1063/1.529137
|View full text |Cite
|
Sign up to set email alerts
|

p-adic path integrals

Abstract: The definition of a path integral is proposed. The method suggested is analogous to Lagrange’s formulation of a path integral used in ordinary quantum mechanics. The notation of linear order on the set of p-adic number, p-adic segment, p-adic Lagrangian, integral of p-adic function of one variable and classical action are introduced. It is proven that if the action is stationary at some trajectory then the Euler–Lagrange equations are satisfied on this trajectory. A finite approximation of a path integral is c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

1996
1996
2017
2017

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 26 publications
(22 citation statements)
references
References 18 publications
0
20
0
2
Order By: Relevance
“…Обсуждение возможной роли теории чисел в физике можно найти в работах Манина [207], [208] и Варадараджана [255]. p-Адическая квантовая механика и теория поля обсужда-лись в [14], [18], [41], [44], [45], [46], [64], [79], [80], [81], [96], [138], [139], [140], [141], [170], [182], [189], [204], [227], [254], [255], [257], [258], [271], [272] и многих других работах.…”
Section: библиографический обзорunclassified
“…Обсуждение возможной роли теории чисел в физике можно найти в работах Манина [207], [208] и Варадараджана [255]. p-Адическая квантовая механика и теория поля обсужда-лись в [14], [18], [41], [44], [45], [46], [64], [79], [80], [81], [96], [138], [139], [140], [141], [170], [182], [189], [204], [227], [254], [255], [257], [258], [271], [272] и многих других работах.…”
Section: библиографический обзорunclassified
“…Thus, p-adic path integral is the limit of the multiple Haar integral when N → ∞. To calculate (9) in this way one has to introduce some ordering in the time t ∈ Q p , and it is successfully done in [6]. On previous investigations of p-adic path integrals one can see [7,8,9,10] and references therein.…”
Section: Introductionmentioning
confidence: 99%
“…(23) In (23) we take h ∈ Q and q, t ∈ Q p . This path integral is elaborated, for the first time, for the harmonic oscillator [11]. It was shown that there exists the limit…”
Section: P-adic Path Integralsmentioning
confidence: 99%