Implant-associated infections arising from biofilm development
are known to have detrimental effects with compromised quality of
life for the patients, implying a progressing issue in healthcare.
It has been a struggle for more than 50 years for the biomaterials
field to achieve long-term success of medical implants by discouraging
bacterial and protein adhesion without adversely affecting the surrounding
tissue and cell functions. However, the rate of infections associated
with medical devices is continuously escalating because of the intricate
nature of bacterial biofilms, antibiotic resistance, and the lack
of ability of monofunctional antibacterial materials to prevent the
colonization of bacteria on the device surface. For this reason, many
current strategies are focused on the development of novel antibacterial
surfaces with dual antimicrobial functionality. These surfaces are
based on the combination of two components into one system that can
eradicate attached bacteria (antibiotics, peptides, nitric oxide,
ammonium salts, light, etc.) and also resist or release
adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive,
topography, bioinspired surfaces, etc.). This review
aims to outline the progress made in the field of biomedical engineering
and biomaterials for the development of multifunctional antibacterial
biomedical devices. Additionally, principles for material design and
fabrication are highlighted using characteristic examples, with a
special focus on combinational nitric oxide-releasing biomedical interfaces.
A brief perspective on future research directions for engineering
of dual-function antibacterial surfaces is also presented.