We formulate, in lattice-theoretic terms, two novel algorithms inspired by Bradley’s property directed reachability algorithm. For finding safe invariants or counterexamples, the first algorithm exploits over-approximations of both forward and backward transition relations, expressed abstractly by the notion of adjoints. In the absence of adjoints, one can use the second algorithm, which exploits lower sets and their principals. As a notable example of application, we consider quantitative reachability problems for Markov Decision Processes.