ICC-BiFormer: A Deep-Learning Model for Near-Earth Asteroid Detection via Image Compression and Local Feature Extraction
Yiyang Guo,
Yuan Liu,
Ru Yang
Abstract:Detecting near-Earth asteroids (NEAs) is crucial for research in solar system and planetary science. In recent year, deep-learning methods have almost dominated the task. Since NEAs represent only one-thousandth of the pixels in images, we proposed an ICC-BiFormer model that includes an image compression and contrast enhancement block and a BiFormer model to capture local features in input images, which is different from previous models based on Convolutional Neural Network (CNN). Furthermore, we utilize a lar… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.