Efficient energy use is crucial for achieving carbon neutrality and reduction. As part of these efforts, research is being carried out to apply a phase change material (PCM) to a concrete structure together with an aggregate. In this study, an energy consumption simulation was performed using data from concrete mock-up structures. To perform the simulation, the threshold investigation was performed through the Bayesian approach. Furthermore, the spiking part of the spiking neural network was modularized and integrated into a recurrent neural network (RNN) to find accurate energy consumption. From the training-test results of the trained neural network, it was possible to predict data with an R2 value of 0.95 or higher through data prediction with high accuracy for the RNN. In addition, the spiked parts were obtained; it was found that PCM-containing concrete could consume 32% less energy than normal concrete. This result suggests that the use of PCM can be a key to reducing the energy consumption of concrete structures. Furthermore, the approach of this study is considered to be easily applicable in energy-related institutions and the like for predicting energy consumption during the summer.