printing technologies have unparalleled advantages in constructing piezoelectric devices with three-dimensional structures, which are conducive to improving the efficiency of energy harvesting. Among them, fused deposition modeling (FDM) is the most widely used thanks to its low cost and wide range of molding materials. However, as the best piezoelectric polymer, a high electroactive β-phase poly(vinylidene fluoride) (PVDF) piezoelectric device cannot be directly obtained by FDM printing because the β-crystal is unstable at the molten state. Herein, we develop for the first time ionic liquid (IL)-assisted FDM for direct printing of β-PVDF piezoelectric devices. An IL can induce and maintain β crystals during melt extrusion and FDM printing, ensuring that the β-crystal in the printed PVDF device is as high as 98.3%, which is the highest in 3D-printed PVDF as far as we know. Furthermore, the shearing force provided by the FDM facilitates the directional arrangement of the dipoles, resulting in the printed PVDF device having selfpolarization characteristics without poling. Finally, the piezoelectric output voltage of the 3D-printed PVDF device is 4.7 times that of the flat PVDF device, and its area current density (17.5 nA cm −2 ) is more than that of the reported 3D-printed PVDF piezoelectric device in the literature by two orders of magnitude. The one-step 3D printing strategy proposed in this paper can realize the rapid preparation of complex-shaped and lightweight self-polarized β-PVDF-based piezoelectric devices for energy harvesting.