2008
DOI: 10.4064/aa131-3-3
|View full text |Cite
|
Sign up to set email alerts
|

Ideal class groups of cyclotomic number fields III

Abstract: [255] c Instytut Matematyczny PAN, 2008 256 F. LemmermeyerIn this article we will show that k{(p)} contains K = Q(ζ p(p−1) ), and that k{(p)}/K is abelian and unramified. In particular we will see that Scholz's construction gives a subfield of the Hilbert class field of K.Classically, proofs that certain extensions are unramified were often done by applying Abhyankar's lemma, which gives sufficient conditions for killing tame ramification in extension fields:Lemma 2 (Abhyankar's lemma). Let L 1 /K and L 2… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
1
0
3

Year Published

2016
2016
2021
2021

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 45 publications
0
1
0
3
Order By: Relevance
“…Die Scholzsche Konstruktion liefert tatsächlich unverzweigte abelsche Erweiterungen geeigneter Kreiskörper; vgl. Lemmermeyer [168]. Die Scholzsche Vermutung lim n→∞ E n /n = 0 ist trotz der Techniken von Golod und Shafarevich immer noch offen.…”
Section: Den Grund Für Seine Pessimistischen Aussichten In Freiburg Eunclassified
See 2 more Smart Citations
“…Die Scholzsche Konstruktion liefert tatsächlich unverzweigte abelsche Erweiterungen geeigneter Kreiskörper; vgl. Lemmermeyer [168]. Die Scholzsche Vermutung lim n→∞ E n /n = 0 ist trotz der Techniken von Golod und Shafarevich immer noch offen.…”
Section: Den Grund Für Seine Pessimistischen Aussichten In Freiburg Eunclassified
“…Eine Lücke in Furtwänglers Beweis wurde später durch diesen selbst, sowie durch Scholz [S6] geschlossen. 4 Wie in [168] gezeigt wird, werden die Scholzschen Strahlklassenkörperüber geeigneten Erweiterungen zu Hilbertklassenkörpern. Insbesondere sind Scholz' Strahlklassenkörper modulo p von Q(ζp−1) Hilbertklassenkörperüber Q(ζ p(p−1) ).…”
Section: Danach Bemerkt Furtwängler Dass Die Kleinste Diskriminante unclassified
See 1 more Smart Citation
“…Our proof relies on computing the distribution of the 4-rank of narrow class groups Cl + (8d) of the real quadratic fields Q( √ 2d) for 2d ∈ D 2 . For 2d ∈ D 2 , the 4-rank of these groups turns out to be substantially larger on average than the 4-rank of narrow class groups of real quadratic fields; compare [2, (7), p. 458] to (5.1). As a result, unlike in the case of generic real quadratic fields, it is not possible to deduce a positive proportion of 2d ∈ D 2 with 4-rank of Cl + (8d) equal to 0 by simply studying the first moment of the 4-rank.…”
Section: Introductionmentioning
confidence: 99%