School dropout is a concern for educational institutions, especially higher education, since it directly impacts management and academic results of institutions, as well as being directly related to social problems. The literature points out that analyzing this phenomenon is a positive factor for developing programs to combat dropout, in addition to planning interventional actions and academic monitoring. Studies shows positive results in the use of Machine Learning techniques for the early identification of students before they dropout, based on the exploration of data from academic systems. Although there are studies with Machine Learning, there were no records of works focused on developing intervention strategies supported by the visualization of academic data. This work aimed to understand the overview of a Brazilian public university, UFSCar, using the exploration and classification of academic data through Machine Learning techniques. The analysis of the data allowed us to obtain an overview of the university's dropout data and made it possible to prepare digital reports with information and statistics to assist university managers, heads of centers and departments, course coordinators and teachers in decision making. In addition, the main stakeholders were interviewed to report their difficulties in knowing the statistics on dropout and to validate the premises initially raised in this work. The reports were evaluated by these stakeholders and resulted in positive perceptions of use. A second intervention was conducted with students in partnership with ProEstudo, a program composed of Psychology professionals from the university. The partnership allowed the improvement of a computational solution, ESPIM, capable of carrying out remote interventions, thus enabling the development of intervention models to support the monitoring of students to combat academic difficulties and dropout. The remote interventions are being used by ProEstudo professionals during the university's academic period. The results of this research point out that data exploration is fundamental to obtain reliable information and visualize the dropout scenario in the institution; in addition, it was possible to confirm that the interventions carried out provide sufficient means to assist managers in decision making and support professionals in monitoring the students, which may result in reduced dropout rates.