Background
Frequent occurrence of extreme high temperature is a major threat to crop production. Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) have important biological functions in the regulation of the response to heat stress. However, the regulatory mechanism of lncRNAs involved in heat response requires further exploration and the regulatory network remains poorly understood in maize.
Results
In this research, high-throughput sequencing was adopted to systematically identify lncRNAs in maize inbred line CM1. In total, 53,249 lncRNAs (259 known lncRNAs and 52,990 novel lncRNAs) were detected, of which 993 lncRNAs showed significantly differential expression (DElncRNAs) under heat stress. By predicting the target genes, 953 common targets shared by cis- and trans-regulation of the DElncRNAs were identified, which exhibited differential expression between the control and the heat stress treatments. Functional annotation indicated that a number of important biological processes and pathways, including photosynthesis, metabolism, translation, stress response, hormone signal transduction, and spliceosome, were enriched for the common targets, suggesting that they play important roles in heat response. A lncRNA-mediated regulatory network was constructed to visualize the molecular response mechanism in response to heat stress, which represented the direct regulatory relationships of DElncRNAs, differentially expressed miRNAs, target genes, and functional annotations.
Conclusions
This study lays a foundation for further elucidation of the regulatory mechanism for the response to heat stress in the maize inbred line CM1. The findings provide important information for identification of heat-responsive genes, which will be beneficial for the molecular breeding in the cultivation of heat-tolerant maize germplasm.