Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence.Multiple endocrine neoplasia type 1 is a rare, autosomal dominant tumor syndrome, typically defined by the presence of tumors in at least two of the following three tissues: the parathyroid, enteropancreatic endocrine tissue, and the anterior pituitary (reviewed in reference 46). The human MEN1 gene was identified by positional cloning in 1997 (13) and shown to encode a 610-amino-acid product (menin) with predominantly nuclear localization (24). Loss of heterozygosity in the region containing the MEN1 locus has been observed in tumor tissue obtained from individuals with multiple endocrine neoplasia type 1 (39) and from mice with an engineered deletion in one of their Men1 alleles (16), predictive of a tumor suppressor function. This is supported by the detection of MEN1 frameshift or nonsense mutations in approximately 70% of human multiple endocrine neoplasia type 1 tumors (46). Menin overexpression has also been shown to diminish the tumorigenic phenotype of Ras-transformed NIH 3T3 cells (36), consistent with its putative tumor suppressor function. Knockout of both Men1 alleles in mice has been shown to result in embryonic lethality (16), suggesting that menin is also important for early development. However, the absence of significant homology to other proteins has complicated efforts to elucidate the function(s) of menin and/or the mechanisms of its tumor suppressor activity.A number of menin-interacting proteins have been identified in an effort to obtain clues about menin function, including the AP-1 transcription factor JunD (2), the putative tumor metastasis suppressor/nucleoside diphosphate kinase nm23 (54), the...