Structural variations in the duck genome significantly impact the environmental adaptability and phenotypic diversity of duck populations. Characterizing these SVs in local domestic duck breeds from Shandong province offers valuable insights for breed selection and the development of new breeds. This study aimed to profile the genomic SVs in three local duck breeds (Matahu duck, Weishan partridge duck, and Wendeng black duck) and explore their differential distributions. A total of 21,673 SVs were detected using LUMPY (v0.2.13) and DELLY (v1.0.3) software, with 46% located in intergenic regions, 33% in intronic regions, and frameshift deletions being the most prevalent in exonic regions (3%). SVs distribution showed a decreasing trend with shorter chromosome lengths. Population structure analysis revealed distinct genetic profiles, with Matahu and Weishan partridge ducks showing closer affinities and the Wendeng black duck having a more homogeneous genetic background, likely due to geographic isolation. Functional annotation identified genes related to nervous system development, mitosis, spindle assembly, and energy metabolism. Notable genes included PLXNA4, NRP2, SEMA3A, PTEN, MYBL2, ADK, and COX4I1. Additionally, genes such as PRKG1, GABRA2, and FSHR were linked to energy metabolism and reproductive activity. The study provides a comprehensive analysis of SVs, revealing significant genetic differentiation and identifying genes associated with economically important traits, offering valuable resources for the genetic improvement and breeding of local duck breeds.