Background: Drought is one of the most common environmental stresses affecting crops yield and quality. Sesame is an important oilseed crop that most likely faces drought during its growth due to growing in semi-arid and arid areas. Plants responses to drought controlled by regulatory mechanisms. Despite this importance, there is little information about Sesame regulatory mechanisms against drought stress.
Results: 458 drought-related genes were identified using comprehensive RNA-seq data analysis of two susceptible and tolerant sesame genotypes under drought stress. These drought-responsive genes were included secondary metabolites biosynthesis-related Like F3H, sucrose biosynthesis-related like SUS2, transporters like SUC2, and protectives like LEA and HSP families. Interactions between identified genes and regulators including TFs and miRNAs were predicted using bioinformatics tools and related regulatory gene networks were constructed. Key regulators and relations of Sesame under drought stress were detected by network analysis. TFs belonged to DREB (DREB2D), MYB (MYB63), ZFP (TFIIIA), bZIP (bZIP16), bHLH (PIF1), WRKY (WRKY30) and NAC (NAC29) families were found among key regulators. mRNAs like miR399, miR169, miR156, miR5685, miR529, miR395, miR396, and miR172 also found as key drought regulators. Furthermore, a total of 117 TFs and 133 miRNAs that might be involved in drought stress were identified with this approach.
Conclusions: Most of the identified TFs and almost all of the miRNAs are introduced for the first time as potential regulators of drought response in Sesame. These regulators accompany with identified drought-related genes could be valuable candidates for future studies and breeding programs on Sesame under drought stress.
Keywords: Sesamum indicum, Drought stress, Regulatory networks, miRNA, Transcription Factors.