The bacterium Photorhabdus luminescens is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora. The nematode requires the bacterium for infection of insect larvae and as a substrate for growth and reproduction. The nematodes do not grow and reproduce in insect hosts or on artificial media in the absence of viable P. luminescens cells. In an effort to identify bacterial factors that are required for nematode growth and reproduction, transposon-induced mutants of P. luminescens were screened for the loss of the ability to support growth and reproduction of H. bacteriophora nematodes. One mutant, NGR209, consistently failed to support nematode growth and reproduction. This mutant was also defective in the production of siderophore and antibiotic activities. The transposon was inserted into an open reading frame homologous to Escherichia coli EntD, a 4-phosphopantetheinyl (Ppant) transferase, which is required for the biosynthesis of the catechol siderophore enterobactin. Ppant transferases catalyze the transfer of the Ppant moiety from coenzyme A to a holo-acyl, -aryl, or -peptidyl carrier protein(s) required for the biosynthesis of fatty acids, polyketides, or nonribosomal peptides. Possible roles of a Ppant transferase in the ability of P. luminescens to support nematode growth and reproduction are discussed.Photorhabdus luminescens (Enterobacteriaceae) bacteria are symbiotic with entomopathogenic rhabditid nematodes of the family Heterorhabditidae, with which they cooperate in infecting a wide variety of insect larvae (38, 45; for reviews, see references 25 and 26). The nematode requires P. luminescens for insect pathogenicity (34), while the bacteria depend on the nematodes for transmission between insect prey. The infective juvenile (IJ)-stage nematodes specifically retain symbiotic P. luminescens cells in their gut mucosa, and transmission of the bacteria is a requisite for insect pathogenicity (31,32,34). The nematodes require P. luminescens cells as a substrate for growth and reproduction (2,21,22,30). It was suggested previously that symbiotic P. luminescens cells provide favorable nutritional conditions for Heterorhabditis bacteriophora nematodes to grow and reproduce (45).During prolonged laboratory culture, P. luminescens strains show a tendency to undergo an apparent phase variation phenomenon (8, 9, 36). The native form of the bacteria, termed primary phase, is isolated from the IJ stage of the nematode. The secondary-phase variants appear at high frequency during prolonged culturing, while more rare is the generation of primary-phase cells from secondary phase (6). The secondaryphase cells differ from the primary-phase cells in colony morphology, cell size, and dye uptake characteristics (6, 7, 9, 52). Also, typical primary-phase characteristics such as bioluminescence, pigment synthesis, phospholipase and siderophore activities, and production of intracellular crystalline inclusion proteins are depressed or absent in secondary-phase cells. The mechanism and role of phase variati...