Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease presenting with severe fatigue, post‐exertional malaise, and cognitive disturbances—among a spectrum of symptoms—that collectively render the patient housebound or bedbound. Epigenetic studies in ME/CFS collectively confirm alterations and/or malfunctions in cellular and organismal physiology associated with immune responses, cellular metabolism, cell death and proliferation, and neuronal and endothelial cell function. The sudden onset of ME/CFS follows a major stress factor that, in approximately 70% of cases, involves viral infection, and ME/CFS symptoms overlap with those of long COVID. Viruses primarily linked to ME/CFS pathology are the symbiotic herpesviruses, which follow a bivalent latent–lytic lifecycle. The complex interaction between viruses and hosts involves strategies from both sides: immune evasion and persistence by the viruses, and immune activation and viral clearance by the host. This dynamic interaction is imperative for herpesviruses that facilitate their persistence through epigenetic regulation of their own and the host genome. In the current article, we provide an overview of the epigenetic signatures demonstrated in ME/CFS and focus on the potential strategies that latent viruses—particularly Epstein–Barr virus—may employ in long‐term epigenetic reprograming in ME/CFS. Epigenetic studies could aid in elucidating relevant biological pathways impacted in ME/CFS and reflect the physiological variations among the patients that stem from environmental triggers, including exogenous viruses and/or altered viral activity.