Purple-leaf tea plants, as anthocyanin-rich cultivars, are valuable materials for manufacturing teas with unique colors or flavors. In this study, a new purple-leaf cultivar “Zixin” (“ZX”) was examined, and its biochemical variation and mechanism of leaf color change were elucidated. The metabolomes of leaves of “ZX” at completely purple, intermediately purple, and completely green stages were analyzed using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS). Metabolites in the flavonoid biosynthetic pathway remained at high levels in purple leaves, whereas intermediates of porphyrin and chlorophyll metabolism and carotenoid biosynthesis exhibited high levels in green leaves. In addition, fatty acid metabolism was more active in purple leaves, and steroids maintained higher levels in green leaves. Saponin, alcohol, organic acid, and terpenoid-related metabolites also changed significantly during the leaf color change process. Furthermore, the substance changes between “ZX” and “Zijuan” (a thoroughly studied purple-leaf cultivar) were also compared. The leaf color change in “Zijuan” was mainly caused by a decrease in flavonoids/anthocyanins. However, a decrease in flavonoids/anthocyanins, an enhancement of porphyrin, chlorophyll metabolism, carotenoid biosynthesis, and steroids, and a decrease in fatty acids synergistically caused the leaf color change in “ZX”. These findings will facilitate comprehensive research on the regulatory mechanisms of leaf color change in purple-leaf tea cultivars.