Mosquitoes present a global health challenge due to their ability to transmit human and animal pathogens upon biting and blood feeding. The investigation of tastants detected by mosquitoes and their associated feeding behaviors is needed to answer physiological and ecological questions that could lead to novel control methods. A high-throughput system originally developed for research in fruit flies feeding behavior, the flyPAD, was adapted and tested for behaviors associated with the interaction or consumption of liquid diets offered to females of the mosquito Aedes aegypti Liverpool strain. Females were given water, sucrose solution and sheep blood in choice and non-choice assays. The volume ingested was evaluated with fluorescein. The placement of the system on a heated surface allowed blood consumption, and without females puncturing a membrane. The flyPAD system recorded nine feeding behavioral variables, of which the number of sips and number of activity bouts correlated with meal volume ingested for both sucrose solution and blood. The adaptation to mosquitoes of the flyPAD system differentiated feeding behavior variables between two feeding deterrents, capsaicin, and caffeine. The flyPAD has potential to quickly assess diverse tastants in both sucrose and blood and may contribute to characterizing more precisely their mode of action.