The Mendelian gene conferring resistance to Soybean mosaic virus Strain SC20 in soybean was fine-mapped onto a 79-kb segment on Chr.13 where two closely linked candidate genes were identified and qRT-PCR verified. Soybean mosaic virus (SMV) threatens the world soybean production, particularly in China. A country-wide SMV strain system composed of 22 strains was established in China, among which SC20 is a dominant strain in five provinces in Southern China. Resistance to SC20 was evaluated in parents, F, F and the F RIL (recombinant inbred line) population derived from a cross between Qihuang-1 (resistant) and NN1138-2 (susceptible). The segregation ratio of resistant to susceptible in the populations suggested a single dominant gene involved in the resistance to SC20 in Qihuang-1. A "partial genome mapping strategy" was used to map the resistance gene on Chromosome 13. Linkage analysis between 178 RILs and genetic markers showed that the SC20-resistance gene located at 3.9 and 3.8 cM to the flanking markers BARCSOYSSR_13_1099 and BARCSOYSSR_13_1185 on Chromosome 13. Subsequently, a residual heterozygote segregating population with 346 individuals was developed by selfing four plants heterozygous at markers adjacent to the tentative SC20-resistance gene; then, the candidate region was delimited to a genomic interval of approximately 79 kb flanked by the new markers gm-ssr_13-14 and gm-indel_13-3. Among the seven annotated candidate genes in this region, two genes, Glyma.13G194700 and Glyma.13G195100, encoding Toll Interleukin Receptor-nucleotide-binding-leucine-rich repeat resistance proteins were identified as candidate resistance genes by quantitative real-time polymerase chain reaction and sequence analysis. The two closely linked genes work together to cause the phenotypic segregation as a single Mendelian gene. These results will facilitate marker-assisted selection, gene cloning and breeding for the resistance to SC20.