Three novel complexes, namely [Nd·L1·HCOO·(H2O)4] (1), [Pr·L1·HCOO·(H2O)4] (2) and [In·L2·Cl·(H2O)2] (3) (L1 = 1,1‐bis(5‐(pyrazin‐2‐yl)‐1,2,4‐triazol‐3‐yl)methane, L2 = 1,1‐bis(5‐(pyrazin‐2‐yl)‐1,2,4‐triazol‐3‐yl)ketone), were synthesized and characterized. The molecular structures of 1–3 were confirmed using single‐crystal X‐ray diffraction. All three obtained complexes are zero‐dimensional and connected to each other by hydrogen bonds. In 1 and 2 the metal is surrounded by nine donors and 3 has seven coordination sites. The interaction of 1–3 with calf thymus DNA (CT‐DNA) was explored using UV absorption spectra and fluorescence spectra. The intrinsic binding constants of 1–3 with CT‐DNA are about 1.9 × 104, 1.4 × 104 and 1.1 × 104, respectively. Stern–Volmer quenching plots of 1–3 have slopes of 0.1508, 0.134 and 0.1205, respectively. The ability of these complexes to cleave pBR322 plasmid DNA was demonstrated using gel electrophoresis assay. Apoptosis studies of the three novel complexes showed a significant inhibitory effect on HeLa cells. Furthermore, MTT assays were used to evaluate the anticancer activity of the three complexes. The cytotoxicity study indicated that complex 1 possesses a higher inhibitory rate of HeLa cells than the other complexes. Especially, the efficacy of 1 was shown to be the highest for cisplatin at 24 h. A further molecular docking technique was introduced to understand the binding of the complexes toward the target DNA.