The predominant guanine nucleotide-binding protein (G-protein) of bovine lung membranes, termed GL, has been purified and compared biochemically, immunochemically and functionally with Gi and Go purified from rabbit brain. The purified GL appeared to have a similar subunit structure to Gi and Go, being composed of alpha, beta and possibly gamma subunits. On Coomassie Blue-stained SDS/polyacrylamide gels and immunoblots, the alpha subunit of GL (GL alpha) displayed an intermediate mobility (40 kDa) between those of Gi and Go (Gi alpha and Go alpha). GL alpha was [32P]ADP-ribosylated in the presence of pertussis toxin and [32P]NAD+. Analysis of [32P]ADP-ribosylated alpha subunits by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing showed that GL alpha was distinct from Gi alpha and Go alpha, but very similar to the predominant G-protein in neutrophil membranes. Immunochemical characterization also revealed that GL was distinct from Gi and Go, but was indistinguishable from the G-protein of neutrophils, which has been tentatively identified as Gi2 [Goldsmith, Gierschik, Milligan, Unson, Vinitsky, Maleck & Spiegel (1987) J. Biol. Chem. 262, 14683-14688]. In functional studies, higher Mg2+ concentrations were required for guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S]) binding to GL than were required for nucleotide binding to Go, whereas Gi showed a Mg2+-dependence similar to that of GL. The kinetics of GTP[35S] binding to GL was quite different from those of Gi and Go; t1/2 values of maximal binding were 30, 15 and 5 min respectively. In contrast, the rate of hydrolysis of [gamma-32P]GTP by GL (t1/2 approximately 1 min) was approx. 4 times faster than that by Gi or Go. These results indicated that the predominant G-protein purified from lung is structurally and functionally distinct from Gi and Go of brain, but structurally indistinguishable from Gi2 of neutrophils.