The widely used hypnosedative-anxiolytic agent R,S-lorazepam is cleared predominantly by conjugation with glucuronic acid in humans, but the enantioselective glucuronidation of lorazepam has received little attention. The present study characterized the kinetics of the separate R and S enantiomers of lorazepam by human liver microsomes (HLMs) and by a panel of recombinant human UDP-glucuronosyltransferase (UGT) enzymes. Respective mean K m and V max values for R-and S-lorazepam glucuronidation by HLM were 29 6 8.9 and 36 6 10 mM, and 7.4 6 1.9 and 10 6 3.8 pmol/min × mg. Microsomal intrinsic clearances were not significantly different, suggesting the in vivo clearances of R-and Slorazepam are likely to be similar. Both R-and S-lorazepam were glucuronidated by UGT2B4, 2B7, and 2B15, whereas R-lorazepam was additionally metabolized by the extrahepatic enzymes UGT1A7 and 1A10. Based on in vitro clearances and consideration of available in vivo and in vitro data, UGT2B15 is likely to play an important role in the glucuronidation of R-and S-lorazepam. However, the possible contribution of other enzymes and the low activities observed in vitro indicate that the lorazepam enantiomers are of limited use as substrate probes for UGT2B15. To identify potential drug-drug interactions, codeine, fluconazole, ketamine, ketoconazole, methadone, morphine, valproic acid, and zidovudine were screened as inhibitors of R-and S-lorazepam glucuronidation by HLM. In vitro-in vivo extrapolation suggested that, of these drugs, only ketoconazole had the potential to inhibit lorazepam clearance to a clinically significant extent.