Copper is a trace metal whose absence or deficiency can cause structural and functional alterations that can be corrected by copper administration. Copper excess is associated with significant liver toxicity, such as that seen in Wilson’s disease, which often exhibits liver steatosis and can be managed by copper sequestrants. Copper, due to its ability to either accept or donate electrons, is a cofactor in many physiological redox reactions, playing an essential role in cell energy homeostasis, detoxification of reactive oxygen species, and hepatic immunometabolism. Given these facts, it is reasonable to speculate that copper might be involved in the pathogenesis of liver fibrosis in the setting of metabolic dysfunction-associated fatty liver disease (MASLD). To address this research question, a narrative review of published studies was conducted, spanning from the needs, sources, and toxicity of copper to Menkes and Wilson’s disease. Most epidemiological studies have demonstrated that MASLD is associated with copper deficiency. However, several studies show that MASLD is associated with copper excess and very few conclude that copper is not associated with MASLD. Therefore, the putative pathomechanisms associating both copper excess and deficiency with MASLD development and progression are reviewed. In conclusion, epidemiological and pathogenic data support the notion that well-balanced copper homeostasis is a prerequisite for liver health. Accordingly, both copper excess and deficiency may potentially predispose to liver fibrosis via the development of MASLD. Therefore, studies aimed at restoring normal bodily stores of copper should be tailored according to precision medicine approaches based on the specific features of copper metabolism in individual MASLD patients.