Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Sucrose transporters (SUTs) play vital roles in phloem sucrose unloading and transportation in wheat grains. However, the genomic information regarding the SUT gene family and their expression patterns in response to heat stress in grains of male-sterile wheat (Triticum aestivum L.) lines has not been systematically studied. In this study, a thorough examination of the wheat SUT gene family was conducted, focusing on their expression patterns in male-sterile lines under heat stress conditions in grain tissues. A total of 19 SUT genes were identified, with phylogenetic analysis indicating their classification into five distinct groups. Polyploidization was identified as a substantial factor in the expansion of SUT genes, with segmental duplication being the predominant mechanism driving the evolutionary expansion of the SUT gene family in wheat. Transcriptome data indicate that the expression levels of TaSUT1 and TaSUT2 were higher than other SUT genes in grains of male-sterile lines. The TaSUT1 expression showed a gradual decreasing trend, while TaSUT2 showed a reverse trend with the process of grain filling. After heat stress, the TaSUT1 expression in grains of male-sterile lines was first significantly increased and then significantly decreased with the filling stage extension, aligning with the observed trend of sucrose levels, indicating that heat stress may decrease the grain weight by reducing sucrose unloading and transportation process in grains. These results provide a systematic analysis of the SUT gene family and lay a theoretical foundation for us to study the grain filling of male-sterile lines in response to abiotic stress.
Sucrose transporters (SUTs) play vital roles in phloem sucrose unloading and transportation in wheat grains. However, the genomic information regarding the SUT gene family and their expression patterns in response to heat stress in grains of male-sterile wheat (Triticum aestivum L.) lines has not been systematically studied. In this study, a thorough examination of the wheat SUT gene family was conducted, focusing on their expression patterns in male-sterile lines under heat stress conditions in grain tissues. A total of 19 SUT genes were identified, with phylogenetic analysis indicating their classification into five distinct groups. Polyploidization was identified as a substantial factor in the expansion of SUT genes, with segmental duplication being the predominant mechanism driving the evolutionary expansion of the SUT gene family in wheat. Transcriptome data indicate that the expression levels of TaSUT1 and TaSUT2 were higher than other SUT genes in grains of male-sterile lines. The TaSUT1 expression showed a gradual decreasing trend, while TaSUT2 showed a reverse trend with the process of grain filling. After heat stress, the TaSUT1 expression in grains of male-sterile lines was first significantly increased and then significantly decreased with the filling stage extension, aligning with the observed trend of sucrose levels, indicating that heat stress may decrease the grain weight by reducing sucrose unloading and transportation process in grains. These results provide a systematic analysis of the SUT gene family and lay a theoretical foundation for us to study the grain filling of male-sterile lines in response to abiotic stress.
Uncovering the genetic characteristics of important traits in wheat cultivars is essential for targeted wheat breeding. Here, a liquid 100K single-nucleotide polymorphism (SNP) chip panel, integrating markers of known function, was selected and used to analyze genetic characteristics for 115 spring wheat cultivars from a high-altitude region of China. A total of 102 reported functional markers closely related to important traits were identified, including 54 related to yield and grain quality and 33 associated with disease resistance and stress tolerance. Of the cultivars, 58.2% of cultivars contained excellent marker genes in the range of 20 to 29. Genetic structure analysis revealed that the cultivars were grouped into five subgroups. Genome-wide association studies identified 218 significant loci on 20 chromosomes, with the exception of chromosome 3D, associated with nine traits and which explained 14.15–29% of phenotypic variance, with 199 potential candidate genes being annotated for the nine traits studied. Notably, 21 previously unidentified candidate genes, with associated SNPs, were closely associated with seven traits, explaining 14.26–19.86% of the phenotypic variance. The current study revealed the genetic characteristics of spring wheat cultivars from a high-altitude region of China. This will provide a reference for spring wheat breeding for high-altitude regions and promote the fine-mapping of new genetic loci controlling important traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.