2023
DOI: 10.3389/fcell.2023.1210714
|View full text |Cite
|
Sign up to set email alerts
|

Identification and validation of the diagnostic signature associated with immune microenvironment of acute kidney injury based on ferroptosis-related genes through integrated bioinformatics analysis and machine learning

Abstract: Background: Acute kidney injury (AKI) is a common and severe disease, which poses a global health burden with high morbidity and mortality. In recent years, ferroptosis has been recognized as being deeply related to Acute kidney injury. Our aim is to develop a diagnostic signature for Acute kidney injury based on ferroptosis-related genes (FRGs) through integrated bioinformatics analysis and machine learning.Methods: Our previously uploaded mouse Acute kidney injury dataset GSE192883 and another dataset, GSE15… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 61 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?