Spike compactness (SC) and length (SL) are the components of spike morphology and are strongly related to grain yield in wheat (Triticum aestivum L.). To investigate quantitative trait loci (QTL) associated with SC and SL, a recombinant inbred lines (RIL) population derived from the cross of Bailangmai (BLM, a Tibet landrace) and Chuanyu 20 (CY20, an improved variety) was employed in six environments. Three genomic regions responsible for SC and SL traits were identified on chromosomes 2A and 2D using bulked segregant exome sequencing (BSE-Seq). By constructing genetic maps, six major QTL were repeatedly detected in more than four environments and the best linear unbiased estimation (BLUE) datasets, explaining 7.00–28.56% of the phenotypic variation and the logarithm of the odd (LOD) score varying from 2.50 to 13.22. They were co-located on three loci, designed as QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D, respectively. Based on the flanking markers, their interactions and effects on the corresponding trait and other agronomic traits were also analyzed. Comparison analysis showed that QSc/Sl.cib-2AS and QSc/Sl.cib-2AL were possibly two novel loci for SC and SL. QSc/Sl.cib-2AS and QSc/Sl.cib-2D showed pleiotropic effects on plant height and grain morphology, while QSc/Sl.cib-2AL showed effects on spikelet number per spike (SNS) and grain width (GW). Based on the gene annotation, orthologous search, and spatiotemporal expression patterns of genes, TraesCS2A03G0410600 and TraesCS2A03G0422300 for QSc/Sl.cib-2AS, and TraesCS2D03G1129300 and TraesCS2D03G1131500 for QSc/Sl.cib-2D were considered as potential candidate genes, respectively. These results will be useful for fine mapping and developing new varieties with high yield in the future.