Post-translational modification of mitochondrial proteins by phosphorylation or dephosphorylation plays an essential role in numerous cell signaling pathways involved in regulating energy metabolism and in mitochondria-induced apoptosis. Here we present a phosphoproteomic screen of the mitochondria matrix proteins and begin to establish the protein phosphorylations acutely associated with calcium ions (Ca 2+ ) signaling in porcine heart mitochondria. Forty-five phosphorylated proteins were detected by gel electrophoresis/mass spectrometry of Pro-Q Diamond staining while many more Pro-Q Diamond stained proteins were below mass spectrometry detection. Time dependent 32 P incorporation in intact mitochondria confirmed the extensive matrix protein phosphoryation and revealed the dynamic nature of this process. Classes of proteins detected included all of the mitochondrial respiratory chain complexes, as well as enzymes involved in intermediary metabolism, such as pyruvate dehydrogenase (PDH), citrate synthase and acyl-CoA dehydrogenases. These data demonstrate that the phosphoproteome of the mitochondria matrix is extensive and dynamic. Ca 2+ has previously been shown to activate various dehydrogenases, promote reactive oxygen species (ROS) generation, and initiate apoptosis via cytochrome c release. To evaluate the Ca 2+ signaling network, the effects of a Ca 2+ challenge sufficient to release cytochrome c were evaluated on the mitochondrial phosphoproteome. Novel Ca 2+ -induced dephosphorylation was observed in manganese superoxide dismutase (MnSOD) as well as the previously characterized PDH. A Ca 2+ dose dependent dephosphorylation of MnSOD was associated with a ∼2-fold maximum increase in activity; neither the dephosphorylation nor activity changes were induced by ROS production in the absence of Ca 2+ . These data demonstrate the use of a phosphoproteome screen in determining mitochondrial signaling pathways and reveal new pathways for Ca 2+ modification of mitochondrial function at the level of MnSOD.Mitochondria are thought to be the result of an early interaction of two lines of cellular life, the bacterium and eukaryotic cell (1;2). At this point in time, mitochondria play a critical role in energy metabolism, apoptosis and cell signaling pathways in the cell. However, the acute and chronic regulatory mechanisms of this organelle remain poorly defined. One approach to assessing the function and regulation of the mitochondrion is an evaluation of the mitochondrial Address correspondence to: Robert S. Balaban, Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive Room B1D416, Bethesda, MD 20892-1061. Tel. 301 496-3658; Fax. 301 402-2389; E-mail: rsb@nih.gov. proteome. Estimates predict up to 3000 proteins (3;4) in mitochondria, however, recent largescale screening studies by Taylor (5) and Mootha (6) identified only about 600 distinct mitochondrial proteins. Many have used proteomic approaches to evaluate differential protein expr...