“…Numerous small molecule therapeutic candidates that directly target the EBOV GP or critical host factors for viral entry have been reported. Most of these inhibitors target events occurring in the endosome, such as GP proteolytic processing, endosomal trafficking, interactions with NPC1, and fusion, including: (1) CA-074, FY-DMK, CID23631927, K11777, and cathepsin B and L inhibitors [29,30,37,38,39,40,41]; (2) inhibitors targeting host factors in the late endosomal steps in EBOV entry, such as U18666A, MBX2254, and MBX2270, targeting NPC1 [19,20,42], and numerous L-type calcium channel inhibitors, including verapamil, tetrandrine, nimodipinee, and diltiazem [10]; (3), a group of selective estrogen receptor modulators (SERMs), such as clomiphene and toremifene, which can directly bind to Ebola GP [36,43]; and (4) numerous G-protein coupled receptor (GPCR) antagonists such as antihistamines, targeting Ebola virus (and Marburg virus) GPs [34,44]. Only the first generation of antihistamines, such as diphenhydramine and chlorcyclizine, effectively block entry of Ebola virus and Marburg viruses, consistent with the notion that these compounds exert their antiviral effect in the endosomes [26].…”