Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. In this study, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of Plasmodium falciparum gametocytes of both genders and in different stages of development as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes. We also provide evidence for a gametocyte-specific cytostome variant. Furthermore, we generate, among other organelles, the first 3D reconstructions of endoplasmic reticulum (ER), Golgi apparatus, and exported structures in gametocytes. Assessing interconnectivity between organelles, we find frequent structural appositions between the nucleus, mitochondria, and apicoplast. We provide evidence that the ER is a promiscuous interactor with numerous organelles and the trilaminar membrane of the gametocyte. Public availability of these volumetric electron microscopy resources of wild-type asexual and sexual blood-stage malaria parasites will facilitate reinterrogation of this global dataset with different research questions and expertise. Taken together, we reconstruct the 3D ultrastructure of P. falciparum gametocytes in high detail and shed light on the unique organellar biology of these deadly parasites.