Phages are ubiquitous in nature, and bacteria with very different genomics, metabolisms, and lifestyles are subjected to their predation. Yet, the defense systems that allow bacteria to resist their phages have rarely been explored experimentally outside a very limited number of model organisms. Actinobacteria are a phylum of GC-rich gram-positive bacteria, which often produce an important diversity of secondary metabolites. Despite being ubiquitous in a wide range of environments, from soil to fresh and sea water but also the gut microbiome, relatively little is known about the anti-phage arsenal of Actinobacteria. In this work, we used DefenseFinder to systematically detect 131 anti-phage defense systems in 22,803 fully sequenced prokaryotic genomes, among which 2,253 Actinobacteria of more than 700 species. We show that, like other bacteria, Actinobacteria encode many diverse anti-phage systems that are often encoded on mobile genetic elements. We further demonstrate that most detected defense systems are absent or rarer in Actinobacteria than in other bacteria, while a few rare systems are enriched (notably gp29-gp30 and Wadjet). We characterize the spatial distribution of anti-phage systems on Streptomyces chromosomes and show that some defense systems (e.g. RM systems) tend to be encoded in the core region, while others (e.g. Lamassu and Wadjet) are enriched towards the extremities. Overall, our results suggest that Actinobacteria might be a source of novel anti-phage systems and provide clues to characterize mechanistic aspects of known anti-phage systems.