Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.inhibitors | aggregation pathway | vibrational coupling T he misfolding of proteins into β-sheet-rich amyloid fibrils is associated with the pathology of more than 20 human diseases, including Alzheimer's, Parkinson, and Huntington diseases (1). Amyloid plaques are formed by masses of fibrils, but growing evidence suggests that the toxic species may be prefibrillar intermediates (2, 3). As a result, there is much interest in understanding the mechanism by which these proteins form fibrils and identifying intermediates in the aggregation pathway. However, obtaining structural information about intermediate species is difficult due to their transient nature. Solid-state NMR (ssNMR) and X-ray crystallography provide high-resolution structures of fibrils (4, 5) and optical techniques can track structural changes in real time (6, 7), but few techniques have both the structural and the temporal resolution to extract specific structural details about intermediates. Fragments have been trapped in intriguing oligomeric structures that may represent intermediate states (5,8) and transient secondary structures are known to exist from circular dichroism measurements and other experiments (9-11), but for full-length proteins it has been difficult to identify the specific residues that contribute to the secondary structure and thus understand their role in the aggregation mechanism. In this paper, we use 2D infrared (2D IR) spectroscopy and isotope labeling to monitor the structural evolution of the full-length human islet amyloid polypeptide (hIAPP or amylin), a 37-residue peptide implicated in type 2 diabetes. We observe the formation of a structured prefibrillar intermediate in a region that has long been known to influence aggregation, but that does not form well-ordered cross-β structure in the amyloid fibril. Its presence provides unique structural insights into the mechanism of amyloid aggregation and helps unify many seemingly inconsistent prior studies.Many studies on hIAPP have focused ...